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PREFACE
TO THE THIRD RUSSIAN EDITION

This book has been written mainly for high school students, but it
will also be helpful to anyone studying on their own whose mathemat-
ical education is confined to high school mathematics. The book is
based on a lecture I gave to Moscow schoolchildren of grades 7 and
8 (13 and 14 years old).

In preparing the lecture for publication I expanded the material,
while at the same time trying not to make the treatment any less acces-
sible. The most substantial addition is Section 13 on the ellipse, hyper-
bola and parabola viewed as conic sections.

For the sake of brevity most of the results on curves are given with-
out proof, although in many cases their proofs could have been given
in a form that readers could understand.

The third Russian edition is enlarged by including the results on
Pascal's and Brianchon's theorems (on inscribed and circumscribed
hexagons), the spiral of Archimedes, the catenary, the logarithmic
spiral and the involute of a circle.

A. I. Markushevich





1. The Path Traced Out
by a Moving Point

In the spoken language the adjective "curved" describes something
fsn*xia» ca out-

line, thing and even fire.
Mathematicians use the word "curve" in the sense of "a curved

line". But what is a curve? How can one embrace in a single notion all
the curves that are traced out on paper with a pencil or a pen, on
a blackboard with a piece of chalk, or in the night sky by a "shooting
star" or a rocket?

We shall use the following definition: a curve is the path traced out
by a moving point. In our examples the role of the point is played by
a pencil point, the sharp edge of a piece of chalk, a burning meteor
passing through the upper levels of the atmosphere, or a rocket.
According to this definition a straight line is just a particular curve.
Indeed, why should not a moving point trace out a straight path?

2. The Straight Line
and the Circle

A moving point describes a straight line when it passes from one
position to another along the shortest possible path. A straight line
can be drawn with the help of a ruler; when a pencil runs along the
edge of a ruler it leaves a trace on the paper in the form of a straight
line.

When a point moves on a surface at a constant distance from
another fixed point on the same surface it describes a circle. Because of
this property of the circle we are able to draw a circle with the help of
compasses.

The straight line and the circle are the simplest and at the same time
the most remarkable curves as far as their properties are concerned.
You are no doubt more familiar with these two curves than with
others. But you should not imagine that you know all of the most im-
portant properties of straight lines and curves. For example, you may
not know that if the vertices of the triangles ABC and AB'C' lie on
three straight lines intersecting at the point S (Fig. 1), the three points
of intersection M, K, L of the corresponding sides of the triangles, the
sides AB and A'B', BC and B'C', and AC and A'C', must be collinear,
that is, they lie on a single straight line.

You are sure to know that a point M moving in a plane equidis-
tantly from two fixed points, say F, and F2, of the same plane, that is,
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so that MF1= MFZ, describes a straight line (Fig. 2). But you might
find it difficult to answer the question: What type of curve will point
M describe if the distance of M from F, is a certain number of times

Figure 1

Figure 3

Figure 2

greater than that from F2 (for instance, in Fig. 3 it is twice as great)?
The curve turns out to be a circle.

Hence if the point M moves in a plane so that the distance of
M from one of the fixed points. F1 or F2, in the same plane is always
proportional to the distance from the other fixed point, that is

MF, = k x MF2
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then M describes either a straight line (when the factor of propor-
tionality is unity) or a circle (when the factor of proportionality is
other than unity).

3. The Ellipse

Consider a curve described by a point M so that the sum of the dis-
tances of M from two fixed points F1 and F2 is constant. Take a piece
of string and tie its ends to two pins stuck into a sheet of paper, leaving
it loose for a while. If we make the string taut with a vertical pencil
and then move the pencil (Fig. 4), the pencil point, M, will describe an
oval-shaped curve which looks like a flattened circle; it is called an
ellipse.

Figure 4

In order to get a closed ellipse we have to move the string over to
the other side of the pins after completing the first half. It is obvious
that the sum of the distances of the point M from the pin-holes F1 and
F. is constant throughout the movement and is equal to the length of
the string.

Figure 5

The pin-holes mark two points on the paper called the foci of the
ellipse. The word "focus" in Latin means "hearth" or "fire" which is
justified by the following remarkable property of the ellipse.
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If we construct an ellipse from a strip of polished metal and place
some point source of light at one focus, the rays of light emanating
from this focus will converge at the other focus. Thus we can see the
"fire" (the image of the first focus at the second focus (Fig. 5)).

4. The Foci of an Ellipse
If we draw a straight line through the foci of an ellipse and extend it

in both directions till it intersects the ellipse, we shall get the major
axis of the ellipse, A,A2 (Fig. 6). The ellipse is symmetric with respect
to its major axis. By erecting a perpendicular to the line segment F, F2
at its centre and extending it till it intersects the ellipse we obtain the
minor axis, B,B, which is also an axis of symmetry of the ellipse. The
ends A1, A2, B, and B2 of the axes are called the vertices of the ellipse.

B2

8,

Figure 6

The sum of the distances of the point A, from the foci F1 and F2
must be equal to the length of the string:

A1F1 + A1F2 = I

But because of the symmetry of the ellipse we have

A1F1 = A2F2

Hence A1F1 can be replaced by A2F2 so that

A2F2 + A1F2 = I
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It is easily seen that the quantity on the left hand side of the equationis the length of the major axis of the ellipse. Thus the length of themajor axis of the ellipse is equal to the length of the string. In otherwords, the sum of the distances to any point of the ellipse from the fociis equal to the length of the major axis of the ellipse. Consequently,
from the symmetry of the ellipse we conclude that the distance from
the vertex B2 (or B,) to a focus is equal to half the length of the major
axis. Hence knowing the vertices of the ellipse, we can easily construct
its foci. To do so we have to mark off the major axis by the arc of the
circle with B2 as centre and with the radius equal to half of A1AZ.

5. The Ellipse is
a Flattened Circle

Using the major axis of the ellipse as a diameter, we construct a cir-
cle (Fig. 7). Through a point N on the circumference erect the perpen-
dicular NP to the major axis. The perpendicular intersects the ellipse
at a point M. It is evident that NP is several times greater than MP. It

Al

Figure 7

turns out that if we take some other point N'on the circumference and
repeat the construction, N'P will be the same number of times longer
than the corresponding line segment M'P', that is

NP/MP = N'P'/M'P'
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In other words, the ellipse can be constructed with the help of the cir-
cumscribed circle by making all the points of the circumference pro-
portionally closer to the major axis. A very simple method of con-
structing an ellipse is based on this property. By drawing a circle and
one of its diameters and replacing the points of the circumference by
points on the perpendiculars to the diameter that are several times (2,
3 and so on) closer to it we obtain points of an ellipse whose major
axis coincides with the diameter and whose minor axis is the same
number of times (2, 3 and so on) smaller than the diameter.

6. Ellipses in Everyday Life
and in Nature

In everyday life we often come across ellipses. If, for instance, we tilt
a glass of water, the edge of the water surface forms an ellipse (Fig. 8).
Similarly, if we cut a slice of a cylindrical sausage with the knife at an
oblique angle, the slice will have the shape of an ellipse (Fig. 9). In

Figure 8 Figure 9

general, if we cut through a right cylinder (or a cone) at an angle
without cutting the base, the cut-away view will be an ellipse
(Fig. 10).

Johannes Kepler (1571-1630) discovered that the planets move
about the sun not along circles, as it had been thought before, but
along ellipses with the sun at a focus (Fig. 11). During each period of
revolution the planet passes once through the vertex A, closest to the
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sun, which is called the perihelion, a>i bnce through the vertex A.,
farthest from the sun, the aphelion. The Earth, for example, is at peri-

Circle

Cylinder

Figure 10

Figure 11

Cone

helion when it is winter in our hemisphere and at aphelion when it is
summer. The ellipse along which our Earth is moving is flattened only
slightly and resembles a circle very closely.
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straight line D,D2 (called the directrix of the parabola) through thefocus is the axis of symmetry of the parabola; usually it is simply
called the axis of the parabola.

8. The Parabolic Mirror
If the parabola is constructed from a polished strip of metal, rays

from a point source of light at the focus will be reflected parallel to the
axis of the parabola (Fig. 13). Conversely, rays parallel to the axis of
the parabola will be reflected and brought together at the focus.

Figure 13 Figure 14

Parabolic mirrors used in automobile headlights (Fig. 14) and in all
search lights are constructed in accordance with this property of the
parabola. However, they are not made in the form of strips but are
paraboloids of revolution. The surface of such mirrors can be
obtained by rotating a parabola about its axis.

9. The Flight of a Stone
and a Projectile

A stone thrown at an angle (not vertically) travels along a parabola
(Fig. 15). This is also true for a projectile such as a cannon ball. In
practice air resistance changes the shape of the curve in both cases, so
that the resulting curve differs from the parabola. But if we were to
observe the motion in a vacuum, we would get a true parabola. By
keeping the initial speed of the projectile constant and varying the
angle that the projectile makes with the horizontal plane when it
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leaves the barrel we shell obtain different parabolas described by the
projectile and different ranges. The greatest range will be obtained
when the angle of the barrel's inclination is equal to 45° This distance

Figure 15

is equal to v2/g, where g is the acceleration of gravity. When dis-
charged vertically the projectile reaches a height which is half of the
greatest range, v2/2g. Irrespective of the angle of the barrel's inclina-
tion (keeping the barrel in the same vertical plane), for a given initial

0
Figure 16

velocity of the projectile there are always places on the ground and in
the air where the projectile cannot reach. It turns out that such places
are separated from those reachable for some angle of the barrel's in-
clination by a curve which is also a parabola (Fig. 16), called the safety
parabola.

10. The Hyperbola

We can construct curves described by a point M in a way similar to
the way we generated the ellipse, only we keep constant not the sum
but the difference of the distances from two fixed points F1 and F2 or
their product or their quotient (in this last case we get a circle). We
shall consider now the case when the difference is constant. In order to
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make the pencil move in the required way, we fix two pins at the
points F1 and F2 and rest a ruler against one of the points so that it
can rotate on the paper about this pin (Fig. 17). Fix one end of a piece

Figure 17

of string to the end S of the ruler (the string should be shorter than the
ruler). The other end of the string should be fixed at F2. Then stretch
the string with the help of the pencil point, pressing it against the ruler.
The difference of the distances MF, and MF2 is

(MF, + MS) - (MFZ + MS) = F1S - (MF2 + MS)

That is, it is equal to the difference between the length of the ruler and
the length of the string. If we rotate the ruler about F,, pressing the
pencil to it and stretching the string, the pencil will describe a curve on
the paper for every point of which the difference of the distances from
F, and F. will be the same and equal to the difference m between the
length of the ruler and the length of the string. In this way we shall get
the upper half of the curve drawn on the right side of Fig. 17. To get
the lower half of the curve we have to fix the ruler so that it is below
and not above the pins. And finally, if we fix the ruler to the pin F2 and
the end of the string to the pin F we shall get the curve drawn on the
left side of Fig. 17. The pair of curves drawn is considered to be one
curve which is called a hyperbola; the points F1 and F2 are its foci.
However, the arcs of the curve depicted do not exhaust all the hyper-
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bola. By taking a longer ruler and a longer string (and keeping the dif-
ference the same) we can continue our hyperbola indefinitely just as
we can continue a straight line segment indefinitely.

11. The Axes and Asymptotes
of the Hyperbola

Draw a straight line through the foci of a hyperbola. The straight
line is the axis of symmetry of the hyperbola. There is another axis of
symmetry perpendicular to the first one bisecting the segment F1 F2.
The point of intersection 0 is the centre of symmetry and is called the
centre of the hyperbola. The first axis cuts the hyperbola at two points
A, and A2, called the vertices of the hyperbola; the segment A1A2 is
called the transverse (real) axis of the hyperbola. The difference
between the distances of the point A 1 from the foci F2 and F1 must be
m:

A1F2 - A1F1 = m

But

A1F, =A2F2

because of the symmetry of the hyperbola. Hence A1F1 may be re-
placed by A2F2 and we get

A1F2-A2F2=m

Clearly the difference A1F2 - A2F2 is equal to A,A2, that is, to the
length of the transverse axis of the hyperbola So, the difference m of
the distances of any point of the hyperbola from the foci (the smaller
distance must be subtracted from the greater) is equal to the length of
the transverse axis.

From the vertex A 1(or A2) draw an arc of the circle with radius
equal to half of F1F2 through the second axis of symmetry. This gives
two points B, and B2 (Fig. 18). The segment B1B2 is called the conju-
gate axis of the hyperbola. Then construct the rectangle PQRS whose
sides are parallel to the axes of the hyperbola and pass through the
points A1, A2, B1 and B2. Draw its diagonals PR and QS. Extending
them indefinitely get two straight lines called the asymptotes of the
hyperbola. The asymptotes have an interesting property: they never
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intersect the hyperbola, though the points of the hyperbola approach
arbitrarily close to the asymptotes, getting closer and closer to them
the greater the distance from the centre of the hyperbola. Arcs of the
hyperbola lying between points at a considerable distance from the
^r.ntrrt msenWr., -. °3rni%ht. Iinr ;n. a 4iiasg: an,'cset hrc an,
MI M2 in Fig. 18), though of course they are nowhere rectilinear, their
bending is so slight that it is hardly noticeable.

Figure 18 Figure 19

In order to draw a hyperbola in an approximate manner without
using a ruler and a string one should do the following. First draw the
axes of symmetry of the hyperbola, then mark off two foci F, and F2
on the first of them at an equal distance from the centre, and then,
using the same axis, mark off in two opposite directions from the
centre segments equal to half of m, that is, half the predetermined dif-
ference of the distances of the points of the hyperbola from its foci.
This gives us the vertices A, and A2 of the hyperbola Then mark off
the points B, and B2 (as above) on the second axis, construct the rec-
tangular PQRS, and finally draw the diagonals. As a result we get
a figure shown in Fig. 19. Now only one thing is left to do-to draw
two arcs symmetric with respect to the axes and passing through the
points A, and A2, bending smoothly and approaching closer and
closer the asymptotes PR and QS.

21



12. The Equilateral Hyperbola

As a particular case the rectangular PQRS can be a square. This is
possible if and only if the asymptotes of the hyperbola are mutually
perpendicular. In this case the hyperbola is said to be equilateral or
rectangular. This particular case is depicted in Fig. 19. For con-
venience we may rotate the whole figure about the point 0 through an
angle of 45° in the direction indicated by the arrow. In this way we get
the hyperbola depicted in Fig. 20. Mark off the segment ON = x on

Figure 20

the asymptote OQ, erect the perpendicular NM = y to it at the point
N and extend it till it intersects the hyperbola.

There exists a simple dependence between y and x: if x is magnified
several times, y is lessened proportionally. Similarly, if x is lessened
severditimes, y'is magriiiieh accorhmgiy. in diner worbs,lne'rengin iii
NM = y is inversely proportional to the length of ON = x:

y = k/x

Due to this property the equilateral hyperbola is the graph of inverse
proportionality. To find out how the factor of inverse proportionality

22



k is related to the dimensions of the hyperbola consider the vertex A2.
For this vertex

x=OK, y=KA2

The line segments OK and KAZ are the legs of the equilateral right
triangle with a hypotenuse

Hence,

which yields

OA2=m/2

x = y and x2 + y2 = (m/2) 2 = m2/4

2x2 = m2/4 or x2 = m2/8

On the other hand, the equation of the inverse proportionality, y =
= k/x, allows us to conclude that xy = k, or in this particular case
(where y = x) x2 = k. Comparing the two results, x2 = m2/8 and x2 =
= k, we find that

k = m2/8

In other words, the factor of inverse proportionality k is equal to one-
eighth of the square of the length of the transverse axis of the
hyperbola.

13. Conic Sections

We have already said that if we cut a cone with a knife, that is, geo-
metrically speaking, intersect it by a plane which does not cut the base
of the cone, the boundary (edge) of the section will be an ellipse
(Fig. 10). By cutting the cone with a plane so that the cut passes
through the base of the cone, we get an arc of a parabola in the cross-
section (Fig. 21(a)) or an arc of a hyperbola (Fig. 21(b)). Thus, all the
three curves -the ellipse, the hyperbola and the parabola -are conic
sections.

The cone which we used has one drawback: only an ellipse may be
placed on it in its entirety (Fig. 10), but a parabola and a hyperbola
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la)

Figure 21

(b)

Figure 22



being infinite curves can be incorporated as conic sections only par-
tially. In Fig. 21(b) one cannot even see where the second branch of the
hyperbola might be taken from. To eliminate this drawback we can
replace the cone by an infinite conic surface. To do so we extend all
the generators of the cone infinitely far in both directions, that is, we
extend the straight line segments AS, BS, CS, DS, ES and so on con-
necting the points of the circle at the base of the cone with its vertex
(Fig. 22; of course we cannot show the infinite extension of the genera-
tors in our figure, so the figure just shows line segments which are
longer than the initial ones). The resulting figure will be the required
conic surface consisting of two halves connected at the point S and
extending to infinity. The conic surfacg can be regarded as the trace of
a moving straight line, namely the straight line passing through the
point S and rotating so that its angle with OS (the axis of the conical
surface) remains constant. The moving straight line is called a genera-
tor of the conical surface; it is evident that the extension of every
generator of the initial cone gives a generator of the conical surface.

(b)

Figure 23

Now let us cut the entire conical surface by a plane. If the plane cuts
all the generators in one half of the surface, the plane section is an
ellipse (in Fig. 23(a) circle); if it cuts all the generators but one parallel
to itself, the plane section is a parabola (Fig. 23(b)), finally, if the plane
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cuts some of the generators in one half of the surface and the remain-
ing generators in the other half, the section is a hyperbola (Fig. 23(c)).
We can see that one half of the conic surface is enough for an ellipse
and parabola For a hyperbola one needs the whole of the conical sur-
face: one branch of a hyperbola is in one half and the other branch in
the other half.

14. Pascal's Theorem
Blaise Pascal (1623-1662) was not yet 17 when he discovered

a remarkable property of conic sections. Mathematicians were in-
formed about his discovery by wall posters (50 copies were published
but only two of these have survived). Several of these posters were
stuck up on the walls of houses and churches in Paris. The reader
should not be surprised. At that time (in 1640) there were no scientific
journals to inform scientists about new discoveries. Such journals
appeared only a quarter of a century later in France and England
almost simultaneously. But let us return to Pascal.

Though his advertisement was written in French and not in Latin,
as was customary at that time, Parisians gazing at it could hardly
make out what it was about. The young genius worded everything
extremely concisely and without proof or explanations.

At the beginning of the advertisement after three definitions the
author gave "Lemma 1", a theorem which we shall give in different
wording. Mark six points on a circle, number them arbitrarily (not

Figure 24

necessarily in their order on the circle) and join them in order by line
segments, the last of them connecting point 6 with point 1 (Fig. 24).
Pascal's theorem states that the three points of intersection of the
straight lines obtained by extending the six line segments and taking
them in pairs as follows: the first with the fourth, the second with the
fifth and the third with the sixth, all lie on a single straight line (i. e., are
collinear).
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'Try to do this several times yourself taking different points on the
circumference (Fig. 25). There may appear a case in which a pair of
straight lines whose intersection we are seeking, for example, the first

Figure 25

and the fourth, are parallel. In this case Pascal's theorem should be
understood as stating that the straight line connecting the two other
points of intersection is parallel to the above-mentioned straight lines
(Fig. 26). Finally, if in addition to the first and the fourth, the second
and the fifth lines are parallel, then in this special case Pascal's
theorem states that the straight lines of the last pair, the third and the
sixth, are also parallel. We encounter such a case when, for example,
the points taken on the circle are the vertices of an inscribed regular

Figure 27 Figure 28
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hexagon and are numbered in the order of their position on the circle
(Fig. 27).

Pascal did not formulate his theorem only for a circle. He noticed
that it held true in the case of any conic section : an ellipse, parabola or
hyperbola. Figure 28 illustrates Pascal's theorem for the case of
parabola.

15. Brianchon's Theorem

The French mathematician Charles Brianchon (1783-1864) discov-
ered in 1806 that the following theorem, which is the dual of Pascal's
theorem, holds true.

Draw six tangents to a circle (or any conic section), number them in
an arbitrary order and find the corresponding points of intersection
(Fig. 29). Brianchon's theorem states that the three straight lines join-

Figure 29

Figure 30

ing the six points of intersection in pairs as follows: the first with the
fourth, the second with the fifth, and the third with the sixth, intersect
at a single point (i. e., are concurrent).

To stress how closely the two theorems are related Brianchon put
down both in two columns, one opposite the other (follow Fig. 30
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where the left side illustrates Pascal's theorem, and the right that of
Brianchon):

Pascal's theorem Brianchon's theorem
Let 1, 2, 3, 4, 5 and 6 be six

arbitrary points on a conic sect
tion.

Connect them in succession by
the straight lines 1, II, III, IV
Vand V1 and find the three points
of intersection of the six lines
taken in pairs: I with IV, II with
V and III with VI.

Then these three
collinear.

points are

Let 1. 2, 3, 4. 5 and 6 be six
arbitrary tangents to a conic
section.

Find in succession their points
of intersection I, II, III, IV V and
VI and connect them by straight
line segments in pairs : I with IV
II with V and III with W.

Then these lines are concur-

rent.

It is clear that in order to change from one theorem to the other it is
sufficient to make the following interchanges of words and phrases: to
interchange "points" and "tangents", "to connect points by line seg-
ments" and "to determine the points of intersection of the straight
lines", "three points are collinear" and "three straight lines are concur-
rent". In short, straight lines and points interchange their roles in this
transition. In projective geometry conditions are found under which
from one true theorem (not necessarily Pascal's theorem) we can
obtain another theorem by means of similar interchanges. This is
called the principle of duality. It enables us to obtain two theorems for
each theorem proved. The other theorem is true, one could say,
automatically.

16. The Lemniscate
of Bernoulli

Now we shall study a curve generated by a point M in a plane that
moves so that the product p of its distances from two fixed points F1
and F2 in the same plane is constant. Such a curve is called a lemnis-
cate ("lemniscate" means "with hanging ribbons" in Latin). If the
length of the segment F1F2 is c, then the distances from the midpoint
O of the segment F1F2 to F1 and F2 are equal to c/2 and the product
of these distances to c2/4. Let us require at the start that the constant
product p should be equal to c2/4, that is, MF1 x MF2 = c2/4. Then
the point 0 will lie on the lemniscate and the lemniscate will have
a figure-eight shaped curve lying on its side (Fig. 31). If we extend the
segment F1 F2 in both directions till it intersects the lemniscate, we
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shall get two points A, and A2. It is not difficult to express the dis-
tance between them, A,A2 = x, using the known distance F1F2 = c.
Note that the distance from the point A2 to F2 is equal to x/2 - c/2
and the distance from the same point A 2 to F, is equal to x/2 + c12-

M

Figure 31

Consequently, the product of the distances is

(x/2 + c/2)(x/2 - c/2) = x2/4 - c2/4

But this product must be equal to c2/4 by assumption. Therefore
x2/4 - c2/4 = c2/4, which yields x2 = 2c2 and x = 2c z 1.414c.

There exists a remarkable relation between this lemniscate and the
equilateral hyperbola. Draw rays from the point 0 (Fig. 32) and mark

'/ / /> 4 \'\
i / r 1 "/ / ! \ \\ M11

i i / \ \\Z ! \ \ 1
I 1 \ \
Figure 32

their points of intersection with the lemniscate. It can be seen that
when the angle of inclination of a ray to OF2 (or to OF1) is less than
45°, the ray intersects the lemniscate at another point distinct from O.
But if the angle of inclination is equal to or greater than 45°, there is
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no other point of intersection. Take a ray of the first group and
assume that it intersects the lemniscate at a point Al (distinct from 0).
Mark off the segment ON = 1/OM from the point 0 on the ray. If we
carry out similar constructions for every ray of the first group, then all
the points N corresponding to the points M of the lemniscate will be
on an equilateral hyperbola having foci F1 and F2 such that OF1 =
= 1/OF1 and OF2 = 1/OF2.

17. The Lemniscate
with Two Foci

If we equate the value of the constant product not to c2/4 but to
another value, the lemniscate will change its shape. When p is less than
c2/4, the lemniscate consists of two ovals, one of which contains inside
it the point F1 and the other the point F2 (Fig. 33). When the product

Figure 35
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p is greater than c2/4 but less than c2/2, the lemniscate has the form of
a biscuit (Fig. 34). If p is close to c2/4, the "waist" of the biscuit K1K2
is very narrow and the shape of the curve is very close to the figure-
eightshape. If p differs little from c2/2, the waist is hardly noticeable,
and for p equal to or greater than c2/2 the waist disappears completely
and the lemniscate takes the form of an oval (Fig. 35; the figure also
shows some other lemniscates for comparison).

18. The Lemniscate with
Arbitrary Number of Foci

Take an arbitrary number of points F1, F2, .... F in the plane and
make a point M move so that the product of its distances from all the
points taken is always constant. We shall obtain a curve whose form
depends on the relative positions of the points F1, F2, ..., F and the
value of the constant product. Such a curve is called a lemniscate with
n foci.

We considered above lemniscates with two foci. Using various
numbers of foci, placing them in different positions and assigning dif-
ferent values to the product of the distances, one can construct lemnis-
cates with the most peculiar outlines. Let us move the pencil point
without lifting it from the paper starting at a point A. so that in the

Figure 36

end it returns to the same point A. The pencil will describe a curve;
our only condition is that the curve should never intersect itself. It is
clear that in this way we can obtain curves with, for instance, the out-
lines of a human head or a bird (Fig. 36). It turns out that for such an
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arbitrary curve it is possible to choose a number n and positions of
foci

F1, F21 F
and assign a value to the constant product of the distances

MF1 xMF2x

such that the corresponding lemniscate will not differ visually from
the chosen curve. In other words, the possible deviations of the point
M describing the lemniscate from the curve drawn will not exceed the
width of the pencil mark (the pencil can be sharpened beforehand as
sharply as possible so that the pencil mark is very thin). This amazing
fact, indicative of the outstanding variety and richness of forms of the
lemniscate with many foci, is proved rigorously in higher mathema-
tics, and the proof is very complicated.

19. The Cycloid
Press a ruler to the lower edge of a blackboard and roll a hoop or

a circle (made of cardboard or wood) along it keeping it tight to the
ruler and the blackboard. If we fix a piece of chalk to the hoop or cir-
cle (at the point of contact with the ruler), the chalk will describe
a curve (Fig. 37) which is called a cycloid (which means "circular" in
Greek). One revolution of the loop corresponds to one arc of the cy-
cloid MM'M"N; if the loop rolls farther, it will generate more and
more arcs of the cycloid.

M.

M N

Figure 37

To construct on paper an arc of the cycloid described by the rolling
hoop whose diameter is equal, for instance, to three centimetres, mark
off on the straight line a segment equal to

3 x 3.14 = 9.42 cm

Thus, we have a segment the length of which is equal to the length of
the rim of the hoop, that is, to the length of the circumference of a cir-
cle with diameter three centimetres. Divide this segment into several
equal parts (for example, six), and for every point of division draw the
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loop in the position when it touches the point (Fig. 38), and number
these positions thus

0, 1, 2, 3, 4, 5, 6

In order to go from one position to the next one the loop has to rotate
one-sixth of the whole revolution (as the distance between two neigh-
bouring points is equal to one-sixth of the circumference of the circle).

M3

Thus, if in position 0 the chalk is at the point M0, in position 1 it will
be at the point Ml (at one-sixth of the circumference from the point of
tangency), in position 2 at the point M2 (at two-sixths of the circum-
ference from the point of tangency), and so on. For locating the points
M1, M2, M3, etc. we have only to make marks beginning with the
point of tangency by circles with a radius equal to 1.5 cm (using com-
passes), making one mark in position 1, two consecutive marks in
position 2, three consecutive marks in position 3, and so on. Now to
construct a cycloid there is only one thing left to do: to connect the
points

M0, M" M2, M3, M4, M5, M6

by a smooth curve (by hand).

20. The Curve
of Fastest Descent

Of the many remarkable properties of the cycloid we shall note only
one, for which it was given the sonorous and rather difficult name, the
brachistochrone. The name is composed of two Greek words bra-
chistos meaning shortest and chrones meaning time.

Consider the following question: what form should be given to
a well-polished metal trough connecting two given points A and
B (Fig. 39) so that a polished metal ball rolls along this trough from
point A to point B in the shortest possible time? At first it seems that
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one should choose a straight trough, as it provides the shortest way
from A to B. But we are trying to find the shortest time and not the
shortest way, and the time depends not only on the path itself but on
the speed of the ball as well. If we bend the trough downwards, the

A

A

Figure 40

1'

part of it beginning at point A will be steeper than the straight chan-
nel, and the ball rolling down such a trough will have a greater speed
than on the equidistant segment of the straight trough. But if we make
the initial part too steep and comparatively long, then the part near
point B will be steeply sloping and also comparatively long; the first
part of the path will be covered by the ball very quickly but the second
part will be covered very slowly, which may delay the arrival of the
ball at point B. Thus, it seems that the trough must be bent down-
wards but not very steeply.

The Italian astronomer and physicist Galileo Galilei (1564-1642)
thought that the path of fastest descent should be in the form of an arc
of a circumference. But the Swiss mathematicians Jakob and Johann
Bernoulli (brothers) proved by exact calculations that it was not so
and that the trough should be bent in the form of an arc of a cycloid
(turned upside down, Fig. 40). Since that time the cycloid has also
been called the brachistochrone, and the proof of the Bernoullis laid
the foundation of a new branch of mathematics, the calculus of varia-
tions. This subject deals with determining the forms of curves for
which some quantity or other in which we are interested reaches its
minimum (or in some cases, its maximum) value.

Figure 39

``4
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21. The Spiral of Archimedes

Imagine an infinitely long second hand on a clock, along which
a small beetle runs indefatigably at a speed of v cm/sec, starting at the
centre of the clock face. After one minute the beetle will be at a dis-
tance of 60v cm from the centre, in two minutes 120v cm and so on.
In general, t seconds after the beginning of the race the beetle will be at
a distance of vt cm from the centre. During this period of time the
second hand will rotate about an angle of 6t° (the hand rotates
through an angle of 360°/60 = 6° every second). Therefore, the posi-
tion of the beetle on the face of the clock after any number of seconds
t is determined in the following way. Mark off the angle a containing
6t° from the initial position of the hand in the direction of its rotation
and measure off the distance r = vt cm along the new position of the
hand. We shall find the beetle in this position (Fig. 41).

Figure 41

Evidently the relation between the angle of rotation a of the hand
(in degrees) and the distance covered r (in centimetres) will have the
form

r = (v/6)a

In other words r is directly proportional to a, the factor of propor-
tionality being equal to k = v/6.

Let us adjust a tiny but inexhaustible bottle of black ink to our run-
ner and assume that the paint, flowing out from a tiny hole, leaves on
the paper (pasted on to the second hand) a trace of the beetle carried
away by the hand of the clock. Then gradually a curve is traced out.
This curve was first studied by Archimedes (287?-212 B.C.). In his
honour it is called the spiral of Archimedes. It should be noted that
Archimedes spoke neither about a second hand nor a beetle (at that
time there were not even mechanical clocks with springs: they were in-
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vented in the seventeenth century). We introduced them here just for
the sake of clarity.

The spiral of Archimedes consists of an infinite number of coils. It
starts at the centre of the clock face and goes away farther and farther
from it as the number of coils increases. In Fig. 42 you can see the first
coil and part of the second.

You might have heard that it is impossible to divide an arbitrary
angle into three equal parts using only a straightedge and compasses
(in particular cases, when an angle contains for instance 180°, 135° or
40°, this problem is easily solved). But if we use an accurately drawn
spiral of Archimedes we can divide any angle into an arbitrary
number of parts.

Figure 42 Figure 43

Let us divide, for example, the angle AOB into three equal parts
(Fig. 43). If we assume that the hand has just rotated through this
angle, the beetle is at the point N on the side of the angle. But when
the angle of rotation was one-third of AOB, the beetle was one-third of
the distance from the centre 0. In order to find this position of the bee-
tle we have to divide the segment ON into three equal parts. This can
be done by using a straightedge and compasses. We get the segment
ON1 whose length is one-third of ON. But if we want the beetle to be
on the spiral we have to make a cut with circle whose radius is ON1
(again with the help of compasses!), getting the point M. The angle
AOM will be one-third of the angle AON.

22. Two Problems of Archimedes
Archimedes himselfs was interested, however, in more difficult

problems, which he himself formulated and solved. These problems
are:
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(1) determine the area of the figure bounded by the first coil of the
spiral (in Fig. 42 it is shaded);

(2) find how to construct the tangent to the spiral at a point N.
It is of great interest that both problems are the earliest examples of

problems in mathematical analysis. Since the seventeenth century
areas of figures have been calculated by mathematicians with the help
of integrals, and tangents have been constructed with the help of de-
rivatives. Hence Archimedes might be called the precursor of mathe-
matical analysis.

As far as the first problem is concerned we shall simply cite the
result obtained by Archimedes: the area of the figure is exactly equal
to one-third of the area of a circle with radius OA. But for the second
problem we can indicate a method of solution. It is a simplified ver-
sion of Archimedes' own argument. The argument depends on the fact
that the velocity of the beetle describing a spiral at any point N is
directed along the tangent to the spiral at this point. If we knotrv the
direction of the velocity, we are able to construct the tangent.

The beetle's movement at the point N is composed of two different
movements (Fig. 44): one in the direction of the second hand at
a speed of v cm/sec, the other along the circumference of the circle
with centre 0 and radius ON. To visualise the latter suppose that the

Figure 44

beetle stood stockstill for a moment at point N. Then it would be car-
ried away by the second hand along the circumference of the circle of
radius ON. The velocity of the circular movement is directed along the
tangent to the circle. And what is its magnitude? If the beetle could go
around the whole circumference with the radius ON, then in 60
seconds he would cover a distance equal to 2n x ON cm. In this case
the speed would remain constant, so to determine it we have to divide
the distance by the time. In this way we get 2n x ON/60 = it x
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x ON/30 cm/sec, which is a little more than 0.1 x ON cm/sec
(n,130 3.14/30 ~ 0.105).

Now we know both components of the velocity at the point N: one
in the direction of ON and equal to v cm/sec, the other perpeddicular
to it and equal to it x ON/30 cm/sec. All we have to do is to add them
according to the parallelogram law. The diagonal determines the ve-
locity of the combined motion and at the same time shows the direc-
tion of the tangent NT to the spiral at any given point.

23. The Chain of Galilei

In his book "Dialogues on Two New Sciences", which was first pub-
lished in Italian in Leiden (the Netherlands) in 1638, Galilei suggested
the following method of constructing a parabola: "Drive two nails
into a wall at a convenient height and at the same level; make the dis-
tance between them twice the width of the rectangle upon which it is
desired to trace the semiparabola. Hang between these two nails
a light chain of such a length that the depth of its sag is equal to the
height of the rectangle (Fig. 45). The chain will then assume the form

of a parabola, so that if this form is marked by points on the Wall, we
shall have described a complete parabola, which can be divided into
two equal parts by drawing a vertical line through a point tpidway
between the two nails".

The method is simple and graphic but not exact. Galilei understood
this himself. In fact, if we draw a perfect parabola, there will be a gap
between the real parabola and the chain. One can see this in Fig- 45,
where the corresponding parabola is a dotted curve.
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24. The Catenary

Only half a century after the publication of Galilei's book the elder
of the Bernoulli brothers, Jacob, found in a purely theoretical way an

Tkqr rl,3.,gtvRrg'htz r1. _SM &elz -P rJithinrg
his findings he challenged other mathematicians to do what he had
done. That was in 1690. In 1691 the correct solution was published by
Jakob Bernoulli himself and also by Christian Huyghens, Gottfried
Wilhelm von Leibniz and the younger brother of Jakob, Johann Ber-
noulli. All of them used in the solution of the problem the laws of
mechanics and the powerful technique of the recently developed
mathematical analysis, the derivative and integral.

The curve in which a chain hangs when suspended from two points
was called a catenary by Huyghens.

As there are chains of different length and the points of suspension
can be at different distances from each other, there exists not one but
many catenaries. But all of them are similar in the same way that all
circles are similar.

25. The Graph
of the Exponential Function

It turned out that the clue to the secret of the catenary was hidden
in the exponential function. In the eighteenth century it was a novelty
but now it should be known to every high school student. This func-

Figure 46

tion has the form y = a", where a is a positive integer distinct from
unity. It became clear from calculations that the most-convenient way
for drawing a catenary was to set a equal to e, the base of natural
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logarithms. These are sometimes called Napeirian logarithms after the
Scottish mathematician John Napier (1550-1617), one of the discov-
erers of logarithms. Number e is almost as famous as the number t; its
approximate value calculated with an accuracy of 0.0005 is e .: 2.718.

In Fig. 46 you can see two graphs: the solid line depicts the graph of
the exponential function y = eX, and the dotted line the graph of
another exponential function closely connected with the previous one:
y = (1/e)"(1/e 0.368).

If we use negative powers, the latter function may be represented in
the form y = e-X Now it is clear that both graphs are mutually sym-
metric with respect to the y-axis, which can be seen from the figure.

Now we shall form two new functions, taking for every x the half-
sum of our exponential functions, y = (1/2)(ex + e-X), or the
half-difference y = (1/2)(eX - e`X). The graphs of these two new func-

Figure 47 Figure 48

tions are shown in Figs. 47 and 48. It turns out that the first graph is
a catenary. By simple transformations which will be discussed below
we can obtain any catenary symmetric with respect to the y-axis. As
far as the graph in Fig. 48 is concerned we shall use it to help in the
transfer from the catenary of Fig. 47 to the more general case.

26. Choosing the Length
of the Chain

Let us consider in more detail the relation between the curve in Fig.
47 and the form of the suspended chain. Imagine that the curve is
drawn on a perfectly vertical, polished wall and that we can drive in
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nails at different points of the curve. Let us drive them in at points
A and B that are at the same level, as Galilei suggested (this condition
is not essential, however). Choose a light chain whose length is exactly
21, the length of the arc AB, and fix its ends at A and B. The chain will
hang in the form of the arc shown above. There will be no gaps
between the hanging chain and the curve.

0 d

Figure 49

x

The selection of a chain of the required length can be done by trial
and error. We can take a longer chain and hang it by different links at
the points A and B increasing or decreasing, as needed, the suspended
part till there is coincidence (Fig. 49). But there is another way:
knowing d (half the distance between the nails), one can calculate
l (half the length of the arc AB) and take a chain whose length is 21.
This calculation can be done using integrals. We shall give only the
result: 1= (1/2)(ed - e-). It follows that if we take x = d in the graph
of the function y = (1/2Xe" - e-x) (Fig. 48), the corresponding value of
y of the point E will be 1. Since 1= (1/2Xed - e- d) < r = (1/2)(ed+ e-d)
(Fig. 49), we can make a rather curious conclusion: the length of the
arc CB of the catenary in Fig. 49 (half the length of the chain) is
shorter than the ordinate of the point of suspension. On the other
hand 1 > d, that is, this length is greater than the abscissa of the point
of suspension.

27. And What if the Length
is Different?

How can we deduce the equation of the catenary for the case when
for given points of suspension A and B the length of the chain, 21', is
not equal to the length 21 of the arc AB of the curve y=
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= (l/2Xex + e-')? In looking for the answer we shall depend on the
fact mentioned above that all catenaries are similar.

Suppose 1' > 1. Then the chain will hang along some arc AC'B
beneath the arc ACB (Fig. 49). We shall show that the required equa-
tion of the catenary to which the arc AC'B belongs can be found in
two steps. First we have to transform the curve 1, y = (1/2) (e" + e-'),
into the curve 2, y=(k/2)(e"m"+e-""). The latter can be obtained
from curve I by the similarity transformation with the point 0 as
centre and k as the ratio of magnification (k is positive). Then we have
to transform the curve 2 into the curve 3, y=b+(k/2Xe"J"+e-"/"), by
shifting the former in the direction of the x-axis (upwards or down-
wards, depending on whether b> 0 or b <0).

The trick is to determine the ratio of magnification. For this pur-
pose mark the point F with the coordinates x=d and y=1' in the
plane of the auxiliary curve depicted in Fig. 48. Since I'> 1, it will not
be on the curve but above it.

Extend OF till it intersects the curve at some point G (it can be pro-
ved that apart from point 0 there is just one point of intersection).
Assume OF/OG=k (in our case 0<k<1); then the coordinates of
the point G will be x = d/k and y = f'/k (prove this!). Hence they will
be related by the equation of the curve: 1/k=(1/2)(edl"-a-d/"). From
this it follows that if we take the points A' and B' with the abscissas
-d/k and d/k on the curve 1 (Fig. 47), the length of the are A'B' con-
necting them will be equal to 21'/k (see Section 26).

28. All Catenaries are Similar
We shall use the number k obtained as the ratio of magnification in

the transformation of curve 1; for the centre of similarity we take the
origin of coordinates 0. Then to each point P(x, y) of curve I there will
correspond a point Q(kx, ky) of the transformed curve 2 (Fig. 50). If we
set X = kx and Y= ky, we get x = X/k and y = Y/k. The latter two
numbers must satisfy the equation for curve 1, as the point P(x, y) is
on this curve: Y/k = (1/2Xe k + e-X'k). But this is exactly the equa-
tion for curve 2 obtained as the result of the transformation. The capi-
tal letters denoting the coordinates can be replaced by lower case,
bearing in mind that now they represent the coordinates of an arbit-
rary point on curve 2.

Note that the points A' and B' of the curve I with abscissas - d/k
and + d/k correspond to the points A" and B" of the curve 2 with the
abscissas - d and + d (Fig. 51). By virtue of the similarity of the arcs
A'B' and A"B" it follows that the length of A"B" is equal to (21'/k)k =
= 21', that is, to the given length of the chain. This is the advantage of
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the curve 2 over the initial curve I. Its drawback, however, lies in the
fact that the curve 1 passes through the points of suspension A and B,
and the curve 2 may not pass through them. But this drawback can be
eliminated easily. If the ordinate of the point B" (or A"), (k/2) (edlk +

Yj

0

Figure 50

+e- d1k), is not equal to r, that is, B" does not coincide with B, then we
set r - (k/2)(edjk + e-d/k) = b.

As the result of the shift of curve 2 by a quantity b in the direction of
the x-axis it will be transformed into curve 3: y = b + (k/2Xed/k +
+e-d1k). The latter curve is, in the first place, similar to curve 1 and is

consequently a catenary. In the second place, it passes through the
given points of suspension : A = (- d, r) and B(d, r). And in the third
place, the length of the arc AB is equal to that of the chain 21'. These
conditions are sufficient for the curve to hang along the arc AB, as was
proved by Bernoulli, Huyghens and Leibniz.

29. The Logarithmic Spiral
This curve might well have been named after Descartes as he was

the first to mention it in one of his letters (1638). However, its detailed
investigation was made by Jakob Bernoulli only half a century later.
Contemporary mathematicians were impressed by its properties. The
stone tomb on the grave of Bernoulli is decorated with the coils of the
logarithmic spiral (Fig. 52).

We have seen already (Section 21) that the spiral of Archimedes is
generated by a point moving along a ray (the "infinite hand") in a way
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such that the distance from the origin of the ray increases propor-
tionally to the angle of its rotation: r = ka. The logarithmic spiral can
be obtained if we demand that not the distance itself but its logarithm
should increase in direct proportion to the angle of rotation. Usually

Figure 52 Figure 53

the equation of the logarithmic spiral is written using the number e as
the base of natural logarithms (Section 25). Such a logarithm is
denoted by In r. Thus, the equation of the logarithmic spiral is written
in the form

In r=ka
or, which is the same,

r=eka

Nothing prevents us from continuing to measure the angle of
rotation a in degrees, but mathematicians prefer to measure it in
radians, that is, to use the ratio of the length of the arc of a circle
between two sides of the central angle to the radius of the circle. Then
the rotation of the hand through a right angle is measured by the
number n%2 1.57, the rotation through a straight angle is measured
by the number n 3.14 and a full rotation, measured in degrees by the
number 360, by the number 2n z 6.28.

We shall mention only one of many properties of the logarithmic
spiral, namely, that any ray issuing from the centre intersects every
coil of the spiral at the same angle. The magnitude of the angle
depends only on the number k in the equation of the spiral. The angle
between the ray and the spiral is understood as the angle between the
ray and a tangent to the spiral drawn at the point of intersection
(Fig. 53).
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30. The Involute of a Circle
Imagine a goat grazing in a meadow. It is tied up to a stake whose

cross section is a circle with a long rope. Stretching the rope taut, the
goat browses on the grass without noticing that the rope, winding
around the stake, becomes shorter and shorter. At last the goat is
drawn tight to the stake. It cannot guess that to get out of its difficulty

it should go in the opposite direction so that the rope begins to un-
wind. What curve is described by the goat in this case? In order not to
occupy ourselves with drawing a goat we have replaced it by a small
circle in Fig. 54. You may consider it to be a schematic drawing of
a collar to which the rope is fixed. You may know that the arc along
which the goat is moving away from the stake (earlier it was
approaching the stake along the same arc) belongs to an infinite curve
which is called the involute of a circle. Mathematicians got acquainted
with this curve for the first time in the eighteenth century. The French

Figure 55 Figure 56

philosopher and writer Denis Diderot (1713-1784) studied its proper-
ties in 1748.

We shall now give a more precise definition of the involute of a cir-
cle. Imagine that an infinitely long, thin and inextensible string is
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wound on a circle so that one of its ends remains free. Then we shall
tie a pencil to it. If we begin to unwind the string keeping it taut, then
the point of the pencil will describe a spiral-shaped curve which is
called the involute of a circle (Fig. 55). It follows from the definition
that for any point B on the curve the length of the free part of the
string BC is exactly equal to the length of the arc of the circle, AC.

If we unwind the string from another curve distinct from a circle, for
instance from an ellipse, then we shall have the involute of an ellipse
(Fig. 56).

Conclusion

We are finishing our outline sketch of some remarkable curves. We
have considered here only a few of them, and we have come nowhere
near exhausting their properties. The aim of the author was to get the
reader, already familiar with elementary mathematics, interested by
some curious facts from the inexhaustible treasure-house of mathema-
tical knowledge. In doing this proofs and calculations were omitted.

If we draw a comparison with a trip to the zoo, we could say that
the author showed the reader a peculiar "collection of curves",
spending little time at every cage to get acquainted with a curve and
confining himself with a very simple characterization of its "habits"
The reader wishing to enrich his knowledge in this field should read
the book "What Is Mathematics?" by R. Courant and H. Robbins
(1948). Another useful book is Handbook of Curves and Their Proper-
ties by Robert C. Yates (1952). The reader with a little knowledge of
Russian can find interesting articles on curves and their properties in
issues of the magazine Kvant The Quantum). It should be noted that
a more detailed study of curves is impossible without a deeper mathe-
matical knowledge, and, in particular, without an acquaintance with
integral and differential calculus.
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